Stochastic tunneling (STUN) is an approach to global optimization based on the Monte Carlo method-sampling of the function to be minimized.
Monte Carlo method-based optimization techniques sample the objective function by randomly "hopping" from the current solution vector to another with a difference in the function value of . The acceptance probability of such a trial jump is in most cases chosen to be (Metropolis criterion) with an appropriate parameter .
The general idea of STUN is to circumvent the slow dynamics of ill-shaped energy functions that one encounters for example in spin glasses by tunneling through such barriers.
This goal is achieved by Monte Carlo sampling of a transformed function that lacks this slow dynamics. In the "standard-form" the transformation reads where is the lowest function value found so far. This transformation preserves the loci of the minima.
The effect of such a transformation is shown in the graph.